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ABSTRACT 

Some of the ideas arising in queueing theory are applied to describe the repair 
mechanisms responsible for recovery of cells from potentially lethal radiation dam- 
age. Two alternative versions are presented of a queueing model of damage repair 
after a single dose of irradiation. The first version represents a linear misrepair 
model, and the second invokes the idea of spontaneous lesion fixation. They are 
pieced together in the third model, allowing for both mechanisms. The consistency of 
the proposed models with published experimental data is tested. 

1. I N T R O D U C T I O N  

The repair of potentially lethal radiation damage manifests itself in 
experiments with a delayed explanation (subculture) of  cells irradiated 
in the stationary stage of their growth in vitro. When cultured cells are 
seeded at low concentrations they multiply exponentially for several 
days. Eventually, however, the cultures enter the stationary phase of 
growth, which is characterized by a constant cell number  and a low 
proliferation activity. Either the irradiated stationary cultures are sub- 
cultured immediately to assay for the surviving fraction, or the subcul- 
turing is delayed for several hours. I f  allowed to remain in the station- 
ary phase of growth for a while after irradiation, the ceils repair some of 
the potentially lethal damage, resulting in enhanced cell survival as the 
delay time increases. With the passage of t ime this process reaches its 
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saturation, which may be attributable to the completion of the recovery 
of cells from radiation damage. Relevant examples are discussed in this 
paper. 

This phenomenon is of considerable significance to cancer radiother- 
apy. Experiments with nine lines of human tumor cells cultivated in 
vitro [1,2] have shown that in cells obtained from radiocurable tumors 
the potentially lethal damage repair in a stationary culture is much less 
pronounced than in those from neoplasms that are not radiocurable. 
This observation implies that intensive repair of potentially lethal 
lesions by resting tumor cells in the interval between consecutive dose 
fractions may account for the failure to ensure local control of a 
nonradiocurable tumor with certain regimes of fractionated irradiation. 
It is also known that hypoxic tumor cells recover more effectively from 
potentially lethal damage than their well-oxygenated counterparts [3]. 

Starting from the seminal paper of Clifford [4], and even earlier, 
there have been many attempts at a comprehensive theory of radiation 
damage repair. Over many years the idea of a saturable repair system 
has been considered a good alternative to the incorporation of nonlin- 
ear interactions between radiation-induced lesions in cell survival mod- 
els. Goodhead [5] adduced experimental facts supporting the following 
premises, which might serve as a basis for mathematical modeling of 
radiation effect upon a cell: 

• Radiation damage occurs at short distances from the sites of 
absorption of small amounts of energy--the predominant role in pro- 
ducing damage being played by the single-track mechanism. 

• The number of lesions is proportional to the radiation dose. 
• Damage can be reduced by the intraceUular repair system, whose 

efficiency drops as radiation dose increases. 

Alper [6] also came to the conclusion that radiation damage occurs in 
accordance with the one-hit mechanism and that relatively low sensitiv- 
ity of cells in the event of small doses is associated not with the 
multiplicity of targets or the interaction between separate lesions but 
with the existence of a mechanism of enzymatic repair of lesions. Alper 
stressed that high doses of radiation suppress the repair mechanism's 
functioning, apparently due to the exhaustion of the biochemical factors 
(repair enzymes) involved in it. Alper noted that only in the case of an 
exponential survival curve is there a reason to believe that either the 
mechanism does not function at all or it maintains equal efficiency over 
the entire range of doses. According to Alper [6], this idea was first set 
forth by Powers [7]. 

A number of models have been proposed to formalize the idea 
mathematically [8-12]. The assumption that a cell has a limited repair 
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capacity is the distinctive feature of the models of the saturable repair 
enzyme type. The presently more fashionable repair-misrepair model 
[13-19] relates radiation-induced cell death to the functioning of error- 
prone repair mechanisms. There is no insurmountable contradiction 
between the two biologically plausible models. It seems likely that the 
advantages of both approaches could be combined in a parsimonious 
model formulated in terms of queueing theory. Such a formulation 
seems to be natural from the biological standpoint. It is widely believed 
that the critical cellular target for the cell-killing effect of radiation is 
DNA. Damage inflicted on DNA by irradiation is represented by DNA 
breaks and modified bases. Unless correctly repaired, such lesions may 
result in cell death. Repair of the DNA template is a complex gene- 
controlled process that involves inducible enzymes. As one example, the 
excision repair of the UV-induced thymidine dimers is controlled by at 
least seven gene products [20]. Hanawalt [21] conjectured that the 
excision repair mechanisms are processive, being coupled to transcrip- 
tion at the nuclear matrix. Thus the repair system is likely to be built up 
from a number of discrete repair units, or reparons [22], that can be 
viewed as s e r v e r s  intended to maintain the integrity of DNA. The 
possibility of thinking of the repair mechanisms as a queueing system 
was preliminarily explored in the context of radiation-induced carcino- 
genesis [23, 24]. 

When applied to the analysis of cell survival data, a pertinent 
queueing model of the repair system offers two distinct advantages: 

1. It allows the results of data analysis to be interpreted in terms of 
parameters having a clear biological meaning. 

2. It provides ready-made methods [25] for computing some substan- 
tive characteristics of the repair system other than those estimated from 
experimental data. The relative capacity of the queueing system consid- 
ered in Section 2.3 of the present paper falls into this category. 

With some reasonable assumptions, the queueing formulations of the 
cell repair model are computationally tractable, providing a useful 
underpinning for the analysis of real data. 

In this paper three versions of a queueing model of the repair system 
are considered with special reference to experimental data on poten- 
tially lethal damage repair in stationary cell cultures. The first model 
allows for misrepair of radiation-induced lesions due to repair errors 
that occur with a constant probability. To retain the model tractability, 
no attempt has been made to construct a queueing counterpart of the 
pairwise misrepair model [16,19]. This might be a good challenge for 
further research. The second model presumes the existence of a mecha- 
nism of spontaneous lesion fixation postulated earlier by other authors 
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[26]. The third version combines the ideas of both approaches. Each of 
the models leaves room for different causes of cell death. The useful- 
ness of the proposed approach is illustrated with an application to 
published data on the recovery of cultured cells from potentially lethal 
radiation damage. 

2. THE MODELS 

Common to all of the models considered below are the following 
basic assumptions: 

Assumption 1. The immediate consequence of irradiation with dose D 
is a formation of primary lesions in irradiated cells. In accordance with 
the "hit-and-target" principle [27], the number of such lesions, v 0, is a 
Poisson random variable with expectation OD, that is, 

(OD) N -OD 
Pr(v  0 = N)  = ~ e  . (1) 

The parameter 0 has the meaning of the expected number of lesions 
per unit dose, thereby characterizing radiosensitivity of a cell. 

Assumption 2. The primary lesions are postulated to be subject to 
repair processes, and the repair results in lesion elimination. Given that 
single-dose irradiation has resulted in the formation of N lesions, the 
functioning of the repair system is modeled as a pure death process with 
m servers and a queue. The service is exponential with intensity/x. The 
usual independence assumptions are accepted. The queue discipline is 
selection for service in random order. The rationale for the latter 
assumption is that DNA lesions occur randomly within the cell genome 
in accordance with the physical properties of ionizing radiations. There 
is experimental evidence that the excision repair of pyrimidine dimers 
and some other lesions is nonrandom, exhibiting a preference for 
actively transcribed DNA sequences [21]. In the models developed here, 
this heterogeneity in repair is ignored lest the models become too 
cumbersome. This, however, is of no serious concern because the 
lesions responsible for cell death are believed to be associated with 
active regions of the genome. 

2.1. MODEL 1 

The model structure is shown in Figure 1. In the act of serving a 
lesion an error may occur with probability /3. This event is known as 
misrepair and involves the lesion fixation that ultimately leads to cell 
death. The explantation of cells also results in the fixation of certain 
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FIG. 1. Diagram of Model 1. 
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lesions. Some of the primary lesions may happen to remain unrepaired 
by the time of subculturing. After having been fixed at the time of 
subculturing, such lesions also cause cell death. The unrepaired and 
fixed lesions will be designated A lesions to distinguish them from the 
misrepaired ones or B lesions. The death of a cell is caused by a single 
lesion of either of the two types; that is, the one-hit mechanism of cell 
survival is assumed. The following two possibilities are worth consider- 
ing in the context of this classification. 

Case 1. The lesions of type A are those waiting for service at the time 
of subculturing. 

Case 2. Every unrepaired lesion, be it under service or not, is included 
in a pool of A lesions. 

As the time after irradiation increases, the cells have a better chance 
to repair A lesions, thereby reducing their numbers by the moment of 
subculturing. In parallel with the elimination of A lesions in a cell, there 
is the accumulation of B lesions, which gives an explanation for the fact 
that the enhancement of cell survival reaches its saturation point. 

The problem is to give an expression for the cell survival probability 
S ( D ; t )  as a function of the irradiation dose D and the time of 
subculturing t, provided the cell is exposed to radiation at time t = 0. A 
service system is described completely by the probabilities of each 
possible state of the system. Such states can be numbered in accordance 
with the number of demands in the system. Referring to the pure death 
process with m-channel service, the probability Pi(t) of exactly i de- 
mands being present (waiting in the queue or being serviced) in the 
system at time t satisfies the following system of differential equations: 

dPo( t ) 
dt = txP,( t ), ( 2a) 

dPi( t ) 
dt = - i l z P i ( t ) + ( i + l ) i z P i + l ( t  ) f o r 0 < i < m ,  (2b) 
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aem+r(t)  
dt = -- I~mPm+r(t)+ l~mPm+r+l(t ) for O <~ r < N - m ,  

(2c) 

dP N ( t ) 
at = - ~ m P N ( t ) ,  (2d) 

given N > m. The initial conditions for (2) are specified as P/(0) = 0 for 
i < N, and PN(O) = 1. 

It follows from Equation (2d) that 

PN( t ) = e-t~mt, 

and by the backward substitution for unknowns in (2) we get 

Pro+r(t) = ( I~mt)N-  m- e -~mt for 0 ~< r < N -  m. (3) 
( N - m - r ) !  

To find a solution of (2) for 0 < i < m, we introduce the generating 
function, 

m 

G ( t ; s )  = ~_~ e i ( t ) s  i. 
i = 0  

Multiplying the first m + 1 equations of system (2) by s i and summing 
them, we obtain 

m - 1  

d ~ P i ( t ) s i = _ t z ~ - , i P i ( t ) s i + l ~  ]~ ( i + l ) P i + l ( t ) s i  
dt 

i f f i0  i = 0  i = 0  

+ ml~em+ l ( t ) s  m, 

which is equivalent to the partial differential equation 

OG OG 
at = - / z ( s  - 1) ~ + ml~em+ l ( t ) s  m. (4) 

The solution of (4), satisfying the initial condition G(0; s) = 0, is of the 
form 

G( t; s)  -- mlz  fot[ ( s - 1)e -~'(t- u) + 1] mem+ l(U) an. 
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Pi(t) = i! Os ~ 

we obtain 

i = 0 , 1 , . . . , m ,  
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for 0 < i ~< m < N. In particular, we have 
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(5) 

Model 1.1. In this case we assume that the subculture does not stop 
the repair process and the subcultured cells have enough time for its 
completion. The conditional survival probability, given the time of 
subculturing t and the number of primary lesions N, is equal to 

F ( N , t )  =/(l_(l_fl)  Nfl)N k=O ~-: Pk(t)  
if N > m ,  

i fO~<N<m.  

(8) 

which, upon undergoing a compounding procedure, immediately gives 
formula (5). 

Now the causes of cell death can be specified explicitly for the two 
cases mentioned above. 

Po( t ) = mix f:[1 - e-  t'(t- u) ]mPm + l( u ) du. (6) 

If m >/N, the solution is given by the binomial distribution 

Pi(t)  = (1 - e-~'t) N- 'e -ira, 0 ~ i <~ N. (7) 

Remark 1. One of the reviewers pointed out a somewhat simpler way 
of deriving formula (5). Let X( t )  be the number of demands in the 
system at time t. The function X( t )  decreases from N as long as 
X(t )>_.m+l .  The probability that X( t )  reaches m at time u is 
ml~Pm+l(u)du. Conditional on this event, the probability that i~< m 
lesions remain at t > u is a binomial of the form 
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If N > m, it follows from (5) that 

m (Z)jO Pk(t)=mlZk~ = [1--e-~(t-u)]'-ke-k~(t-")P~+l(u)du 
k = 0  0 

= mlzfoPm+ a(U) du, (9) 

where P,,+ a(U) is given by (3). Substituting (9) in (8), 

F( N,t ) = l mtz( 1 -  ~ ) N fo'Pm+ ~( u) du' 

[ ( 1 - / 3 )  N , 

N > m ,  

O<N~<m. 

Taking formula (3) and the fact that N Ek=oPk(t)--1 into account, the 
conditional probability F(N, t) can be represented as 

{ ( ) F(N, t ) - -  ( 1 - / 3 )  N 1 -  (txmt)k k = O k! e -  t~mt 

(1-- t3) 

if N >  m, 

if0~<N~<m, 

(10) 

and the overall survival probability is given by 

(OD) N 
S(D;t)  = Y'~ N! e-°DF(N't) '  t > 0. (11) 

N = 0  

If t = 0 (no delay in subculturing) the dose-effect relationship (11) 
acquires the form 

S ( D ; 0 ) =  ~ [0D(1--~)]Ne_oO (12) 
NI 

N = 0  

It is instructive to consider what happens when t ~ ~. Since the series 
in (11) converges uniformly with respect to t >/0, we may write 

lim S( D; t )  = 
I --.~ oo 

( 1 -  ~)N(OD)Ne-oD 
N! 

N = 0  

¢x~ N c¢ 

+m/x E (1 ~ . N ( 0 D )  -onr ~ - l J )  ~ e jorm+l(u) du. 
N = m + l  
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Using (3), we may readily check that 

m~ f 0 Pm+ l(u) du = 1. 

Consequently, 
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If we assume, as the other extreme, that the explantation of cells 
stops the repair process completely but the lesions whose repair has 
been started by that time are not responsible for cell death, a modified 
version of the model is easy to obtain. Instead of (8) we will have I m 

E Pk(t)(  1 - / 3 )  N-k, 

F ( N , t ) =  k=O 
N ) N - k  
~_. Pk ( t ) ( l -  /3 

k = 0  

N > m ,  

O <~ N <~ m. 

Let N > m; then 

m() 
f0'kE ° m F ( N ' t ) = ( 1 - / 3 ) N - m m p "  = k [ 1 -  e-~(t-u)]m- k(1-- /3)m- k 

× e-k ~('-u)Pm + I(U) du 

= ( 1 - / 3 ) N -  mm~fot[1 _/3(1 - e-l*(t-u))]mem+ I(U) du. 

For 0 < N ~< m, 

N(N) F ( N , t ) =  ~_, k (1--e-"t)N-k(1--/3)N-ke-k~'t 
k = 0  

=[1-- fl(1--e-t't)] N. 

In the case of immediate subculturing, 

t n  

S ( D ; O ) =  E (oD)N N! e-°D' (14) 
N=O 

= ~ _ t ~  N" "tOD)Ne-oo e-aOo lim S(D;t)  /_, (1 ,_j ~ = . (13) 
t - * ~  N = 0  
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which coincides with a multihit-one target model of radiation cell 
survival [27]. Formula (13) still stands for the limiting behavior of 
S(D;t)  for t ~oD. 

Remark 2. A reasonable compromise between the two versions of 
Model 1.1 can be worked out but at the cost of an increase in the 
number of unknown parameters. In doing so, we introduce a random 
time Y, assuming that any lesion that has been under service longer 
than Y by the moment t continues on its way to the complete repair, 
otherwise it is fixed by the explantation procedure. The misrepair may 
occur with probability /3. The random variable Y is exponentially 
distributed with parameter r/. Let P~,k(t) stand for the probability that 
the number of lesions left in the system at the moment t is equal to n 
and there are exactly k lesions whose time under service is less than Y. 
If N>~m, the probabilities Pn,k(t) satisfy the system of differential 
equations 

dt =ix(m--k+l)Pn+l'k-l(t)+ixkPn+l'k(t) 

dPn,k(t) 

+ 71(k + 1)Pn,k+l(t ) -- (mlx + kr;)Pn,k(t ) 

for m <~ n <~ N; O <~ k 4 m; 

d----7~ = Ix(n - k q- 1)Pn+ 1,k(t) -b Ix(k + 1)Pn+ 1,k+ 1(t) 

+ rl(k + 1)P~,k+l(t ) --(nix + krl)P~,k(t ) 

f o rO<n<m;O<<.k  <~n. 

The probabilities Pn,o(t) are the wanted characteristics of the repair 
system in the context of cell survival. This modification of Model 1, 
biologically appealing as it is, meets with only limited success because a 
solution to the above system is not readily available. 

Model 1.2. The basic assumption is that the explantation of cells 
blocks the repair process and the death of a cell is caused by any 
unrepaired or misrepaired lesion. In this case the function F(N,  t) is the 
product of the probability of the correct service, (1 - / 3 )  N, of all lesions 
and the probability, Po(t), that no unserved demands are left in the 
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system by time t, that is, 
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F(N ' t )={  (1 -  N=0.N>0' 

Using (6), (7), and (15), we obtain 

(15) 

[ ( 1 - / 3  ) Nm/Xfo[1 - e-~'('-u)lmpm+ I(U) du, 
F( N,t) 

I 

~ [ ( 1 - / 3 ) ( 1 - e - ~ " ) ]  N, 

N>m,  

O <~ N <~ m. 
(16) 

Consequently, the overall survival probability is equal to 

~o (OD)N 
S(D;t)= ~, N! e-°DF(N't)' (17) 

N = 0  

with the function F(N, t) given by (16). 
In the event of immediate subculturing (t = 0), the dose-effect curve 

is expected to be exponential, that is, 

S(D;0)  =e -°D, (18) 

which is intuitively appealing because the surviving cells are only those 
that bear no radiation-induced lesions. As to the limiting value of 
S(D;t) as t ~ ,  it remains the same as in Case 1. If N > m ,  the 
function F(N, t) can be represented as 

F(N,t) = (1 -/3)NmtXfo X[0,t](u)[1 - e-~'(t-u)]mpm+l(u ) du, 

where X[o.tl(u) is the characteristic function defined as 

(10 if u~[O, t ] ,  
Xt0,t 1(u) = otherwise. 
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By virtue of the inequality 

1 - -  e - # ( t - u )  < 1 

and the Lebesgue theorem on bounded convergence, 

lim f ( N , t )  = (1 - / 3 )  N, (19) 
t ---~ o0 

the same result being valid for N < m. It follows from (17) and (19) that 

lim S( D; t) --- e -s°n. 
t --~ o¢ 

2.2. MODEL 2 

The repair system works without misrepair within the framework of 
this model (Figure 2). The radiation-induced lesions may be fixed 
spontaneously to form the flow of lesions fixed before entering the 
service system. Within the framework of this model such lesions are 
termed B lesions. The waiting time until the spontaneous fixation of a 
lesion is assumed to be exponential, and its mean value is denoted by 
1/v .  The intensity of the flow of B lesions is proportional to the 
number of lesions waiting in the queue and hence decreases with time. 
We introduce the concept of A lesions in much the same way as for 
Model 1. Cell death is caused ultimately by any lesion of either type A 
or type B present at the moment of explantation. The longer the cell is 
kept in the medium without subculturing, the higher the probability for 
a lesion to be fixed spontaneously, but the probability of being served by 
the repair system increases concurrently. Thus, the assumptions of 
Model 2 also provide an explanation of the saturation effect. This 
model may be considered as a queueing system that is known as the 
system with impatient customers [28]. 

cell death 

spontaneous 
f i x a t i ° n / ~  ~ - ~  

initial number m servers 
of lesions 

FIG. 2. Diagram of Model 2. 

= correct repair 
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l e t  the initial number of lesions be equal to N > m. Then the states 
of the system are described by the joint probabilities, P°(t), of the 
following events: the flow of lesions of  type B is empty, and there are 
exactly k lesions left in the system (being repaired or waiting for 
service) at the moment  t. The probabilities P~(t) satisfy the following 
system of differential equations: 

dP° ( t ) 
at = IxP°( t )' 

dPi° ( t ) 
dt = - i t z P i ° ( t ) + ( i + l ) t z P i ° l ( t )  f o r 0 < i < m ,  

dP°+r( t ) 
dt ( Ixm + rv)P°+r( t )  + o IzmP~ +,+ l ( t )  

dt 

for O <~ r < N - m,  

dP°( t------~) = - [  tzm + ( N -  m ) v ] P ° (  t).  

This system can be integrated by the same procedure as the one applied 
to Equations (2). For N > m, the final solution is 

p O ( t ) = m l ~ ( 7 ) f o t [ 1 - e - ~ " ' - " ] m - / ' e - k ~ ' ( t - " p m + , ( u ) d u  ' 

O < k  <~m, (20a) 

0 
Pr +r( t ) = ( N--'---'m ! O < r < N - m ,  

(20b) 

whereas for N < m the solution is of the form 

P ° ( t ) = ( N )  (21) k (1 - -e - tL t )N-ke -km '  O<.<k<m. 

We consider the same two cases as in Section 2.1. 

Model 2.1. Under  this model, the lesions of type A are those waiting 
for service at the moment  of subculturing, and the conditional survival 
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probability F(N, t) is given by 

m 

E P°(t) if N >  m, (22) F( N,t) = k=o 

1 i fN<.m. 

It follows from (20) that 

m 
t 0 

Y'~ P°( t) = mix foe°m+ l(U) du 
k=O 

N - m  mix 1 mix ( N - m ,  
( N _ m _ a ) I ( )  Bl_e-,, 1 + ----~-), = . - ' - i f -  

(23) 

where Bx(a, b) is the incomplete beta function. 
To obtain the overall survival probability S(D; t), we substitute (22) 

and (23) for F(N, t) in formula (11). If irradiated cells are subcultured 
immediately after exposure, then S(D; 0) depends, in contrast to Model 
1.1, on only the parameters 0 and m: 

m (OD)Ue_OD" 
S(D;O) = E N! 

N = O  

Model 2.2. In this case, the set of lesions of type A includes those 
under service at the moment of subculturing. The conditional survival 
probability, given the initial number of radiation induced lesions N, is 

F(N, t )  = 
!P°(t) if N >  m, 

(1 -e -~ t )  N ifN<~m. 
(24) 

The overall survival probability is given by (11) and (24), and the 
function S(D;0) appears to be of the same form as for Model 1.2: 

S (D;0)  = e -°D. 

Since the series in (11) converges uniformly with respect to t, we may 
obtain the limiting survival probability as follows: 

(OD)Ne_OD o~ (oD)lV ( im ) lim S( D;t) = N[ + ~ N! e-OD 
t --~ oo N = 0  N f m + I  t l - -F(t lN) e 

(25) 
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For both versions of Model 2 we have 
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oo  

lim F( tlN) = ml~ fo pO+ l( u) du 
t ---* oo 

( N - m - l ) !  

o0  

>( fo e-(~m+~)u(1--e-uu)N-m-l du 

1 ) 
( N _ m _ I ) ! B  + l ; N - m  , 

where B(x; y) is the beta function. As one of the arguments of B(x; y) 
is an integer, we can write 

N - m  txm 
lim F(tIN) = I-I I~m +iv '  t--.~ i= l 

which, in combination with (25), gives the limiting survival probability 
under the assumptions of Model 2. 

2.3. THE RELATIVE REPAIR CAPACITY 

A useful characteristic serving to compare different models is the 
relative capacity of a queueing system defined as the probability for any 
lesion, formed at the initial moment, to be repaired if the waiting time 
is allowed to be as long as necessary. For Model 1 the relative capacity 
is equal to the probability of correct repair, 1- /3 .  Under the assump- 
tions of Model 2, all the lesions that have reached the repair system are 
ultimately repaired. Hence the relative capacity is given by the probabil- 
ity for a lesion to avoid spontaneous fixation before entering the repair 
system. 

In terms of the theory of competing risks [29], the lifetime of a lesion 
can be defined as the waiting time until either the event of spontaneous 
fixation occurs (risk 1) or the lesion enters the repair system (risk 2). 
Let Z denote the moment when a lesion leaves the queue for being 
served and T the moment of spontaneous fixation. The variables Z and 
T being random, the lifetime of a lesion is thought of as the random 
variable U = min(T,Z). We assume that Z and T are independent 
random variables with cumulative distribution functions G(t) and H(t), 
respectively. The relative capacity, a, of the repair system described by 
Model 2 is the probability Pr(T > Z). 
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Given the initial number of lesions N >  m, the conditional net 
probability that a lesion is still waiting for service at time t is 

G(t lN)  = Pr (Z  > t iN) 

1 N 
= ~ )-". P r (Z  i > t) 

i = 1  

1 N - m  
=-~ y" Pr(Zm+r>t),  

r = l  

where Z i is the random moment of the ith lesion entry into the repair 
system. It is clear that 

N 

Pr(Zm+ r > t) = • Pj( t ) ,  
j=N-r+l  

where Pj(t) is the probability that by moment t there are exactly j 
lesions present in the system. The explicit expression for  Pj(t) is given 
by (3). Hence we have 

1 N - m  N 
G(tIN) = -~ ~., ~, Pj(t) 

r = l  j=N-r+l  

x N - m  
= -~ Y~ jPy+m(t). 

j = l  

Since the competing risks under consideration are independent, the 
crude conditional probability a s = Pr(Z > TIN) can be represented as 

N -  m oo 

f 1 a N = G(t lN)  al l ( t )  = -~ ~_~ j +m(t) a l l ( t ) ,  
j = l  

where H(t) stands for the net cumulative distribution function of T. As 
assumed initially, the distribution H(t) is exponential with parameter v. 
Therefore, 

+m(t) d H ( t ) =  ( N - m - j ) [  (l~mt)N-m-'e-(~'m+~)tdt 

 N-m-J t 
~, t~m + v ! ~ t ~ - +  v ]" 
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If we introduce the notation p = I.~m/( ixm + v), then 

1 N - m  
a N = -~ ~, jpN-"-](1 _ p). 

j= l  

The probability for a lesion to be left unrepaired is a function of 
irradiation dose. In view of the obvious fact that a N = 0 for N ~ m, we 
obtain 

(OD) N - o o  
a ( D ) =  E a N ~ e  

N = m + l  

= ( 1 - 0 )  E N N! e -°°  E JP N-m-j. 
N = m + l  ] = 1  

Thus the capacity of the system is given by 1 - a(D). 
It is worth noting that a(D) depends only upon the ratio ~,/rn~, 

that is, the ratio of the two rates, associated with risk 2 and risk 1 or, to 
put it differently, of the intensities of the flows of lesions of type B and 
type A, respectively. 

2.4. MODEL 3 

From the above discussion it follows that both Model 1.2 and Model 
2.2 display an exponential survival curve in the event of immediate 
subculturing, which typically is inconsistent with experimental data. This 
problem could be remedied by assuming an independent mechanism of 
superfast repair [30,31], but at the sacrifice of model simplicity, as this 
would increase the number of unknown parameters. That is why no 
consideration is given to these versions of models 1 and 2 in the 
application presented in the next section. For the same reason, a 
generalization given here refers to models 1.1 and 2.1 only. 

The model under consideration allows both for misrepair, occurring 
with probability fl, and for spontaneous lesion fixation with intensity v. 
To avoid unnecessary repetitions we give the final expression for the 
probability of cell survival: 

(OD)N 
S(D; t )=  ~., N! e -e°F(N ' t ) '  t > O ,  

N = O  

where 

F(N, t )=lmtz(1- f l )Nfo tP°+x(u)du,  for N >  m, 

[ ( 1 -  f l)  N for0  ~<N~<m, 

and pO+ 1 is obtained from (20) at r = 1. 
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Being a combination of models 1.1 and 2.1, this model does not yield 
an exponential limiting dose-response relationship as t --+ + ~. Within 
the framework of Model 3, 

~N(OD) N 
l i m S ( D ; t ) = e  -°D ~ ( 1 - / 3 ,  

t~Q¢ N = 0  

I Hm /1 + E (1-/3) N(°D)N 
N! t i=1 i~m+iv " N = m + l  

The relative capacity of the repair system can be derived from the 
following line of reasoning. Having entered the repair system, each 
lesion is repaired with probability 1 - /3 .  Thus, the probability for any 
formed lesion to be repaired is given by the product of the capacities 
calculated for the two models: 

1 -  --- ( 1 -  /3) 1 - ( 1 - 0 )  E N 
N = m + l  

N-m .] 
Xe-°D j--~l JpN-m-J " 

This model is hierarchical in the sense that it can be reduced to the 
other two by eliminating the corresponding parameter v or/3. 

3. DATA ANALYSIS 

We apply the models introduced in Section 2 to the analysis of some 
published experimental data on recovery of cultured cells from radia- 
tion damage. In the following, use is made of only versions 1.1 and 2.1 
of models 1 and 2. The reason for such a choice is given in Section 2.4. 
In the application described below, the model parameters were esti- 
mated by the minimum chi-squared method, and the statistical chi- 
square test was employed for the goodness-of-fit testing. The optimiza- 
tion procedure was based on the method by Nelder and Mead (see [32], 
pp. 451-454). As to Model 1.1, we proceeded from formulas (10) and 
(11) when applying this model to experimental data. 

The first data set (Data Set 1) is taken from the paper of Little [33]. 
The experiments were performed on Chang liver cells (LICH) that were 
grown in the medium and allowed to reach a plateau phase of growth by 
two methods referred to as density inhibition and nutritional inhibition. 

Example 1. Survival curves for density-inhibited stationary cultures 
irradiated with various doses of X-rays are presented in Figure 3. Either 
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the cells were subcultured to assay for colony-forming ability immedi- 
ately after irradiation, or the cultures were returned to the incubator 
without change of medium and the cells were subcultured 6 or 12 h 
later. The repair of potentially lethal radiation damage seems to be 
essentially complete by 6 h. 

Example 2. If under similar experimental conditions the culture 
medium was renewed immediately after irradiation, a different pattern 
was documented (Figure 4). A little repair occurred with delays as short 
as 6 h, although by 12-24 h it approached that in the cells kept in the 
conditioned medium. 

Example 3. To determine whether potentially lethal damage repair was 
specifically associated with the density-inhibited state, similar experi- 
ments were performed with cultures whose growth was inhibited by 
medium exhaustion (nutritionally inhibited cultures). As can be seen 
from the survival curves depicted in Figure 5, the repair of radiation 
damage in nutritionally inhibited cultures continues up to 12 h and is 
similar to or greater in magnitude than that observed in the density- 
inhibited cultures. There is no evidence of saturation effect in this case. 

Shown in Table 1 are the estimated values of the model parameters, 
all of them being biologically meaningful: m is the maximum number of 

10 o 

~ i0-I 
~ 10-2 

lO-a I I I I I 

200 400 600 800 1000 

IRRADIATION DOSE (R) 

FIG. 3. Example I. Experimental data: explanation immediately (O), 6 h (O), and 
12 h (O) aftcr irradiation. Short dashes, Model I, long dashes, Modcl 2; solid linc, 
Model 3. See text for explanations. 
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FIG. 4. Example 2. The same notation as in Figure 3. Models 1 and 3 yield 
identical dose-effect curves (solid lines). 

I0 o 

~> 10-I 
>. 

~w-J 

C~ 10 . 2  
y ~  

0 

I 0  - a  , ~ ; I I . i 

300 400 500 600 700 800 900 

IRRADIATION DOSE (R) 

FIG. 5. Example 3. The same notation as in Figure 3. The theoretical curves 
produced by the three models are identical. 
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TABLE 1 

Estimates of Parameters and X 2 Values--Data Set 1 
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m 0 /x /~ v X 2 d.f. 

Example 1 
Model 1 3 1.20 3.63 0.08 - -  3.45 11 
Model 2 2 1.06 13.9 - -  22.3 1.05 11 
Model 3 3 1.24 7.00 0.06 9.80 0.90 10 

Example 2 
Model 1 3 1.23 2.63 0.10 - -  1.52 11 
Model 2 2 1.07 2.65 - -  0 1.65 11 
Model 3 3 1.23 2.63 0.10 0 1.52 10 

lesions that can be repaired at a time; 0 is the mean number  of  primary 
lesions produced per  unit (1 Gy = 100 rad) dose; /z is the service rate, 
which is the reciprocal of the mean duration (in hours) of  the repair 
process; v is the rate of  spontaneous lesion fixation; and /3 is the 
misrepair probability. 

There  is close agreement  between the estimates of the number  of 
servers, m, provided by all three models when they are applied to the 
data of Examples 1 and 2. The same is true for the estimated values of  
the parameter  0. It is clear from Table 1 and Figures 3 and 4 that all the 
models provide a very good fit to the data, and none of them appears to 
be superior to the other two. As Example 2 suggests, this analysis does 
not call for the more  complicated Model 3, which reduces to Model 1. 
The recovery of cells from potentially lethal damage is far from com- 
plete by t = 12 h under Model 1; this is corroborated by the limiting 
dose-effect  curve computed for the same values of  the model parame-  
ters. On the contrary, Model 2 predicts the completion of the repair 
processes by that time, providing a slightly bet ter  fit to experimental 
data in this specific case. As to Example 3, estimation of the parameters  
/3 and v seems to be infeasible because of lack of information on the 
saturation effect. With the paramete r  values m = 1, 0 = 0.95, /z = 6.60, 
/3 = 0, Model 1 provides a good fit ( p  > 0.95) in this case, and so does 
Model 2 at v = 0, all the other parameters  being the same as for Model 
1 (Figure 5). It is clear that the proposed models are unsuited for the 
analysis of  truncated data like those presented in Example 3. 

Another  useful source of data (Data Set 2) is provided by the work of 
Weichselbaum and Little [34]. These data are summarized in the 
following two examples. 

Examples 4. The plateau-phase cultures of  human breast cancer cells 
MCF-7 were irradiated in different doses and subcultured either imme- 
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diately after irradiation or after a certain delay. The surviving fractions 
measured for various delay times after a single-dose irradiation are 
shown in Figure 6. 

Example 5. Similar experiments were performed on cells of human 
melanoma C-145 in a wider dose range. The corresponding surviving 
fractions are presented in Figure 7. 

As evident from Table 2 and Figures 6 and 7, the application of 
Model 3 is not warranted in both examples. Example 5 provides suffi- 
ciently strong evidence against Model 2, which is rejected at a signifi- 
cance level of less than 0.001. 

Based on the parameter estimates displayed in Tables 1 and 2, the 
system capacity is typically greater under Model 2 than under Model 1. 
But it is Model 1 that demonstrates a good description of experimental 
data in all the examples considered above, though it does not consis- 
tently outperform the other two. The results in Tables 1 and 2 suggest 
that the radiosensitivity parameter 0 is characteristic of the cell type 
(line), though its values may vary with the stage of cell culture growth 
[35], and the same is true for the /3 values. Since the tz values are 

I0 o 

< 
i0 -l 

~.~ 10 - 2  

D = 2 0 0 R  

. . t  

D=500R 

I0 -s i i l I I ~t * 

0 2 4 6 8 24 

HOURS A F T E R  IRRADIATION 

FIG. 6. Example 4. Open symbols correspond to experimental points with the 
variance shown by vertical bars. Cell cultures exposed to 200 R (O), 500 R (X), and 
700 R (~). Short dashes, Model 1; long dashes, Model 2; solid line, Model 3. 
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10 o 

< 
10 -I 

~ 10 .2  

10-3 

D=200 

f 

D=I200 

, , , , I / /  , 
0 2 4 6 8 2 4  

H O U R S  A F T E R  I R R A D I A T I O N  

FIG. 7. Example 5. The same notation as in Figure 6. Experimental points: 200 R 
(O), 350 R (x) ,  700 R (~), and 1200 R (0).  

d i sc repan t  be tween  Examples  1 and  2 (d i f ferent  cul tur ing)  and  Exam-  
ples  4 and  5 (d i f ferent  cell l ines),  they  a re  l ikely to d e p e n d  bo th  on  the 
type of  cells and  on  the condi t ions  of  the i r  cul turing.  Thus,  the  obse rved  
var ia t ions  of  the  m o d e l  p a r a m e t e r s  a re  intui t ively appea l ing  and biologi-  
cally plausible .  T h e  e s t ima ted  values  o f  rn suggest  that  the  lesions 
subjec ted  to r epa i r  p rocesses  a re  few in number ,  which is cons is ten t  

TABLE 2 

Estimates of Parameters and X 2 Values--Data Set 2 

m 0 tx ~ v X 2 d.f .  

Example 4 
Model 1 3 1.31 17.9 0.48 - -  2.08 9 
Model 2 1 1.12 5.90 - -  18.2 3.25 9 
Model 3 1 1.03 15.8 0.40 16.4 1.04 8 

Example 5 
Model 1 1 0.81 38.8 0.41 - -  8.16 13 
Model 2 1 0.87 11.1 - -  7.70 39.4 13 
Model 3 1 0.81 38.8 0.41 0 8.16 12 
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with small  va lues  of  the  cri t ical  
app l i ca t ion  o f  the  m u l t i h i t - o n e  
s ingle-dose  i r rad ia t ion  [22]. 

n u m b e r  of  hits 
ta rge t  m o d e l  to 

resul t ing f rom the  
cell survival af ter  

We are very thankful  to the reviewers f o r  their most  valuable comments  
and suggestions. 
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